EVOLUCION HISTORICA DE LOS
DISPOSITIVOS PERIFERICOS
Se denominan periféricos tanto a las unidades
o dispositivos a través de los cuales la computadora se comunica con el mundo
exterior, como a los sistemas que almacenan o archivan la información,
sirviendo de memoria auxiliar de la memoria principal.
Según la definición de periférico dada
anteriormente, éstos están constituidos por unidades de entrada, unidades de
salida y unidades de memoria masiva auxiliar.
Una Computadora es una máquina que no tendría
sentido si no se comunicase o interactuara con el exterior, es decir, si no
tuviese periféricos.
Los dispositivos de E/S transforman la
información externa en señales codificadas, permitiendo su transmisión,
detección, interpretación, procesamiento y almacenamiento.
DISPOSITIVOS
DE ENTRADA Y SALIDA
Los dispositivos de entrada son aquellos elementos
de hardware que nos permiten el ingreso de datos a la computadora, los mismos
que luego de ser procesados serán presentados al usuarios a través de los
dispositivos de salida, de los primeros podemos mencionar, el teclado, el
mouse, etc. y de los segundos entre los más conocidos podemos anotar la
impresora, el monitor, etc.
EL TECLADO
DE ORDENADOR - HISTORIA Y EVOLUCIÓN
El teclado, es quizás el componente menos valorado
y tenido en cuenta en el ordenador que utilizamos a diario. Damos por hecho que
es una pieza integrada en nuestro PC, y no le damos importancia hasta que se
estropea. Es bastante curioso teniendo en cuenta que es la parte delordenador que mas utilizamos y tocamos.
Originalmente,
el teclado estándar no se desarrolló a partir de una sola
fuente. Se creo por medio de tres proyectos diferentes generados por IMB, y
hubo más de un problema a lo largo de su camino.
Muchas configuraciones tienen su origen directo en
el teclado IBM “IBM Enhanced 101 Key Keyboard”, el cual IBM asentó como
estándar en el año 1987. Este teclado mejorado no fue el primero que creo IBM
sino el tercero. ¿Cómo fueron los anteriores modelos de teclados? Para empezar,
el primer teclado original de IBM tenía 83 teclas (IBM PC and XT keyboards).
Había 10 teclas de función en la parte izquierda del teclado, y unas teclas
numéricas y un cursor en la parte derecha. Lo que ahora llamamos Control (ctrl.),
y las teclas Shift y Alt, estaban localizados un una línea cerca de las teclas
de función.
La tecla escape (Esc) estaba a la izquierda de los
números en la parte superior. A la derecha de la tecla Shift, una tecla
permitía al usuario teclear el signo tan común *.* de forma directa. El
diseño de este primer teclado de IBM era un poco absurdo respecto a la
colocación de las teclas, aunque las abreviaturas y atajos a ciertas funciones
eran bastante prácticas. Por desgracias, muchas de estos atajos desaparecieron
en los teclados modernos.
El siguiente diseño de IBM fue el teclado original
AT. Era de algún modo incompatible con el mas temprano diseño PC/XT, se podía
reprogramar para que el teclado funcionara. El teclado AT aceptaba 10
teclas de función a la derecha, y colocó la tecla de escape en la parte de los
números.
En algún punto, en donde el mercado forzó a IBM la
actualización delordenador AT, introdujo el modelo mejorado de teclado, el cual hemos
comentado al principio, y que era compatible con el modelo AT original, pero
con un diseño muy distinto. La tecla Esc y las 12 teclas de función estaban
ahora en la parte superior, los números se movieron a la parte derecha. Los
cursores cambiaron, convirtiéndose en lo que conocemos hoy en día. Cuatro
teclas con flechas en la parte inferior al lado de los números, y encima, un
grupo de 6 teclas, para paginar arriba y abajo, suprimir, inicio, insertar y
finalizar.
Como curiosidad, comentaremos que la tecla suprimir
dio algunos problemas a los usuarios de la época ya que muchos la presionaban
para finalizar un trabajo, cuando en realidad lo estaban borrando. Hay que
tener en cuenta que en los antiguos ordenadores no había demasiadamemoria, por lo que algunos trabajos eran irrecuperables. Afortunadamente, hoy
en la mayoría de casos, se pueden salvar esos datos perdidos.
Algunos cambio más se han ido produciendo dejando
el teclado tal como lo conocemos hoy en día. Hay incluso teclas que realmente
no sabemos para que son. Somos seres de costumbres y normalmente nos habituamos
a tocar ciertas teclas que nos sirven para nuestras tareas y con eso es
suficiente.
EVOLUCION
DEL MOUSE.
Uno de los periféricos más olvidados cuando
hablamos de nuestro hardware es el ratón. En parte por olvido, en parte
porque pasa un poco desapercibido ante los billones de microtransistores que
componen los actuales procesadores y núcleos de video, pero lo general es que
muchos usuarios en general invierten sumas millonarias en su nuevo
computadorcomprando con las monedas que reciben de cambio ratón y teclado. Los
más sensatos buscan un poco más de equilibrio, conscientes de que finalmente el
mouse será el periférico que nos hará la experiencia de uso de la máquina grata
o ingrata en la mayoría de los casos; el caso extremo de esto son los gamers
empedernidos, que invierten grandes sumas de dinero en ratones que les permitan
tener la mayor precisión posible al jugar (100 dpi pueden ser claves a la hora
de un frag en una partida muy competitiva).
Hoy, el mouse está cada día más cercano a
dejar de ser un roedor propiamente tal, de la mano de las tecnologías
inalámbricas que están dejándolo sin cola, pero no por eso vamos a
dejar de celebrar su cumpleaños número 40 (les apuesto que todos pensaban que
tenía mucho menos tiempo) mostrándoles parte de un reportaje que preparó el
blog de la Wired (sólo una parte, para que vayan a leerlo completo allá)
con un breve recorrido por su evolución y futuro.
El primer dispositivo señalador que el mundo conoció fue el que
presentóDouglas Engelbart el 9 de Diciembre de 1968, en una
demostración pública de lo que podía ser un “computador personal” (a diferencia de esos salones llenos de tubos que componían una
computadora profesional de la época) y que es el hecho que históricamente
dio el puntapié inicial a la revolución de la computación
Este protomouse era un bloque
de madera tallado, con solamente un botón y debajo tenía dos ruedas sobre ejes
que tenían la función de mover un par de potenciómetros que eran los que en
rigor daban la posición del puntero.
Como en ese tiempo todo se
trataba de experimentar, no sólo se probaron prototipos de dispositivo
señalador operados con la mano. También se trabajó en un aparato que nos
permitía controlar el puntero con la rodilla.
El aparato naturalmente se
ubicaba debajo de la mesa y estaba inspirado en el hecho de que las
piernas podían ser utilizadas con bastante precisión para manejar los pedales
de un automóvil. Según Engelbert, el dispositivo podía ser aún más
preciso que un mouse operado con la mano. Por suerte no logró imponerse por
sobre éste, El paso que permitió que el mouse se posicionara definitivamente
como el dispositivo señalador preferido fue su incorporación en el primer
Mac, el Macintosh 128K allá por 1984, que tenía la gracia de tener
un sistema operativo con una interface gráfica (mucho antes de Windows) donde
el puntero se controlaba con el mouse.
El mouse Apple era bastante
cuadrado y además incluía sólo un botón,cosa que fue característica del
fabricante de la manzana por mucho tiempo (aún cuando los sistemas
operativos fueron evolucionando e incorporaron menús contextuales si los
querías invocar con el mouse tenías que ocupar una tecla del teclado o usar un
mouse de otra marca).
El primer trackball es incluso
anterior al primer mouse de Engelbert, pero su uso no estaba orientado a
computadoras personales sino que al control del DATAR, una máquina de la armada
canadiense que permitía simular un campo de batalla con radar y todo.
Los
trackball fueron evolucionando, eliminando la bola de boliche y cambiándola por
una de un tamaño algo más discreto; Logitech vendió varios productos basados en
trackball y orientados a gamers pero donde hemos visto una especie de
renacimiento del concepto (amado por algunos y odiada por otros) es en los teléfonos
inteligentes, como las Blackberry y el T-Mobile G1. En ellos la bolita se hace aún más pequeña para quedar a merced de los pulgares.
Otra cosa amada y odiada por
muchos son los touchpad. Hoy en día presentes en la totalidad de los
computadores portátiles (que día a día van apoderándose más y más del
mercado), consisten básicamente en una superficie plana donde al
deslizar el dedo podemos mover el puntero de la interface. Una
característica que tienen es que no son absolutos, es decir da lo mismo donde
apoyemos el dedo ya que ahí será donde coja al puntero (a diferencia de las
tabletas digitalizadoras, que si pueden trabajar de modo absoluto).
Hoy en día los touchpad (o
trackpad como también se les conoce) se han desarrollado permitiéndo el uso de
más de un dedo (el ejemplo perfecto son los nuevos Macbook, donde
incluso se reconocen gestos de varios dedos asignables a funciones del sistema
operativo). Synaptics, uno de los fabricantes más grandes de touchpads
últimamenteha liberado drivers que permiten el uso de varios dedos en
Windows.
El dispositivo señalador que
más he odiado en mi vida es
el Trackpoint que venía en los Thinkpad de IBM y otros notebooks Dell, Toshiba
y HP. Sencillamente insoportable, impreciso, incómodo. Muchos lo
defendieron diciendo que era ideal para el trabajo de los tipeadores y
programadores, ya que no había que sacar la mano del teclado interrumpiendo el
tipeo y que además las muñecas descansaban en el cuerpo del notebook a
diferencia de cuando uno usa touchpad, lo que bajaba las posibilidades de
enfermarse del túnel carpiano.
A pesar de que los fabricantes
de notebooks lo siguen usando, yo y mi dedo índice protestamos enérgicamente:
el TrackPoint, PointStick, AccuPoint o como quiera llamarlo no es un periférico
de mi agrado. Para nada.
Para cerrar este pequeño
recorrido por los diferentes tipos de dispositivos señaladores inventados a lo largo
de la historia, incluyo lo que muchos dicen serán los mice del futuro:
dispositivos que leen las ondas cerebrales (si, que miedo) para de esa
manera controlar el cursor / interface del sistema operativo. Yo francamente no
sé como vayan a evolucionar los ratones, ya que personalmente soy tan
descoordinado que si trato de usar el teclado y controlar un cursor con la
mente probablemente termine mordiéndome la lengua. Quizás a otros les vaya
mejor. Lo único que sé es que por ahora lo que más me acomoda son los mouse
tradicionales (he tenido la desgracia de manejar mouses tridimensionales en
varias ferias electrónicas y son LO incómodo, los fabricantes no tienen en
cuenta lo cansador que es tener los brazos en alto), claro que ópticos (nada de
bolitas llenas de mugre y migas de la mesa) e inalámbricos (Bluetooth, por
supuesto; nada más absurdo que tener que enchufarle un apéndice a algún puerto
USB del notebook para tener mouse).
EVOLUCION
DEL SCANNER.
Un escáner de
computadora es un periférico que
se utiliza para convertir, mediante el uso de la luz, imágenes impresas o
documentos a formato digital.
Los escáneres pueden tener
accesorios como un alimentador de hojas automático o un adaptador para
diapositivas y transparencias.
Al obtenerse una imagen
digital se puede corregir defectos, recortar un área específica de la imagen o
también digitalizar texto mediante técnicas de OCR. Estas
funciones las puede llevar a cabo el mismo dispositivo o aplicaciones
especiales.
Hoy en día es común incluir en
el mismo aparato la impresora y el escáner. Son las llamadas impresoras
multifunción
Tipos de escaner
Hay varios tipos. Hoy en día los más extendidos son
los planos.
·
"de
barras".- Se usan para registrar codigo de barras
·
De mano. En su momento muy económicos, pero de muy baja
calidad. Prácticamente extintos.
·
Cenitales. Para escanear elementos frágiles.
·
De tambor. Consiguen muy buena calidad de escaneo, pero son
lentos y caros.
·
Otros
tipos. Existen tipos de escáneres
especializados en un trabajo determinado (por ejemplo para escanear microfilms,
o para obtener el texto de un libro completo, para negativos...).
Escáner plano
También
llamados escáneres de sobremesa, están formados por una superficie plana de
vidrio sobre la que se sitúa el documento a escanear, generalmente opaco, bajo
la cual un brazo se desplaza a lo largo del área de captura. Montados en este
brazo móvil se encuentran la fuente de luz y el fotosensor de luz (por lo
general un CCD).
Conforme
va desplazándose el brazo, la fuente de luz baña la cara interna del documento,
recogiendo el sensor los rayos reflejados, que son enviados al software de
conversión analógico/digital para su transformación en una imagen de mapa de
bits, creada mediante la información de color recogida para cada píxel.
La
mayoría de estos escáneres pueden trabajar en escala de grises (256 tonos de
gris) y en color (24 y 32 bits) y por lo general tienen un área de lectura de
dimensiones 22 x 28 cm. y una resolución real de escaneado de entre 300 y 2400
ppp, aunque mediante interpolación pueden conseguir resoluciones de hasta 19200 ppp.
Están
indicados para digitalizar objetos opacos planos (como fotografías, documentos
o ilustraciones) cuando no se precisa ni una alta resolución ni una gran
calidad.
Algunos
modelos admiten también adaptadores especiales para escanear transparencias, y
otros poseen manipuladores de documento automáticos (Automatic Document
Handler) que pueden aumentar el rendimiento y disminuir la fatiga del operador
en el caso de grupos de documentos uniformes que se encuentran en condiciones
razonablemente buenas.
Los
escáneres planos son los más accesibles y usados, pues son veloces, fáciles de
manejar, producen imágenes digitalizadas de calidad aceptable (sobre todo si
están destinadas a la web) y son bastante baratos, pudiéndose adquirir uno de
calidad media por menos de 120 €.
La
mayor desventaja de estos escáneres es la limitación respecto al tamaño del
documento a escanear, que queda limitado a los formatos DIN-A5 o DIN-A4.
Escáner cenital
Un escáner
cenital (en inglés planetary scanner u orbital scanner) es un tipo de escáner
que se utiliza para hacer copias digitales de libros o documentos que, por ser
viejos o extremadamente valiosos, para que no se deterioren escaneándolos con
otro tipo de escáner.
Estos escáneres consisten en una cámara montada en un brazo que toma fotos del elemento deseado. Su ventaja principal es que los libros no tienen que ser abiertos completamente (como pasa en la mayoría de los escáneres planos). El escaneo de volúmenes encuadernados se realiza gracias a que la fuente de luz y el sensor CCD se encuentran ensamblados a un brazo de trayectoria aérea.
En sus inicios el precio de estos escáneres era elevado y sólo se utilizaban en museos y archivos, pero en la actualidad la disponibilidad de cámaras digitales buenas y baratas han hecho que estos escáneres no resulten tan privativos.
Estos escáneres consisten en una cámara montada en un brazo que toma fotos del elemento deseado. Su ventaja principal es que los libros no tienen que ser abiertos completamente (como pasa en la mayoría de los escáneres planos). El escaneo de volúmenes encuadernados se realiza gracias a que la fuente de luz y el sensor CCD se encuentran ensamblados a un brazo de trayectoria aérea.
En sus inicios el precio de estos escáneres era elevado y sólo se utilizaban en museos y archivos, pero en la actualidad la disponibilidad de cámaras digitales buenas y baratas han hecho que estos escáneres no resulten tan privativos.
Escáner de tambor
Los
escáneres de tambor son los que más fielmente reproducen el documento original,
ya que producen digitalizaciones de gran calidad y resolución (hasta 16.000 ppp
de resolución óptica). Sus problemas son la velocidad de escaneo (son lentos),
no son indicados para documentos de papel quebradizo porque es necesario curvarlo
sobre el tambor y requieren un alto nivel de habilidad por parte del operador.
Además, son bastante caros.
Utilizan
una tecnología diferente a la del CCD. Los originales, normalmente
transparencias (aunque se pueden escanear opacos también), se colocan en un
cilindro transparente de cristal de gran pureza, que a su vez se monta en el
escáner. El tambor gira entonces a gran velocidad mientras se hace la lectura
de cada punto de la imagen. La fuente de luz suele ser un láser que se
encuentra dentro del tambor (para transparencias) o fuera (para opacos), y el
sensor es un tubo fotomultiplicador (PMT) que recibe la luz de un único punto de la
imagen en cada instante.
Producen
digitalizaciones de alta resolución y buena gama dinámica entre bajas y altas
luces, con imágenes en colores primarios, que pueden ser convertidas en CMYK
mientras el lector recorre la imagen.
Son
muy caros, oscilando su precio, según modelos, entre 15.000 € y 200.000 €, por
lo que suelen ser usados exclusivamente por empresas especializadas del sector
de las artes gráficas (laboratorios, imprentas, editoriales, etc.).
Escáner para microfilm
Los escáneres para microfilm
son dispositivos especializados en digitalizar películas en rollo, microfichas
y tarjetas de apertura.
Puede ser difícil obtener una
calidad buena y consistente en un escáner de este tipo, debido principalmente a
que los suelen tener un funcionamiento complejo, la calidad y condición de la
película puede variar y ofrecen una capacidad de mejora mínima. Son escáneres
muy caros, existiendo pocas empresas que los fabriquen.
Escáner para transparencias
Los escáneres
para transparencias se utilizan para digitalizar diapositivas, negativos
fotográficos y documentos que no son adecuados para el escaneado directo.
Pueden trabajar con varios formatos de película transparente, ya sea negativa,
positiva, color o blanco y negro, de tamaño desde 35 mm hasta placas de 9 x 12
cm.
Existen dos modalidades de este tipo de escáneres:
·
Escáneres de 35
mm. Solo escanean negativos y transparencias, pero lo hacen a resoluciones muy
altas.
·
Escáneres
multiformato. Suelen capturar transparencias y negativos hasta formato medio o
hasta formato de placas 4”x 5” o incluso 5”x 7”, tienen una resolución muy alta
y un rango dinámico en ocasiones sorprendente, pero frecuentemente no permiten
escanear opacos. El uso de medios transparentes por lo general produce imágenes
con un buen rango dinámico, pero, dependiendo del tamaño del original, la
resolución puede ser insuficiente para algunas necesidades.
La calidad obtenida es mayor que la que ofrecen los
escáneres planos, aunque hay que tener cuidado con la presencia de motas de
polvo o rascaduras en las transparencias, que pueden ocasionar la aparición de
impurezas en la imagen digitalizada resultante.
Escáner de mano
Estos escáners son
dispositivos manuales que son arrastrados sobre la superficie de la imagen a
escanear. Escanear documentos de esta manera requiere una mano firme, entonces
una desigual velocidad de exploración produce imágenes distorsionadas,
normalmente un indicador luminoso sobre el escáner indica si la exploración fue
demasiado rápida. Generalmente tienen un botón "Inicio", el cual es
sostenido por el usuario durante la exploración; algunos interruptores para
configurar la resolución óptica y un rodillo, lo que genera un reloj de pulso
para sincronización con la computadora. La mayoría de escáneres de mano fueron en blanco
y negro, y la luz generada por una serie de LEDs verdes para iluminar la
imagen. Un típico escáner de mano también tenía un programa que abría una
pequeña ventana a través de la cual se podía ver el documento que se escaneaba.
Fueron populares durante la década de 1990 y, por lo general tenían un módulo de
interfaz propietario específico para un determinado tipo de computadora,
generalmente un Atari ST oCommodore Amiga.
CALIDAD
DEL ESCÁNER
A
los datos que obtienen los escáneres (normalmente imágenes RGB) se les aplica
cierto algoritmo y se envían a la computadora mediante una interfaz de
entrada/salida (normalmente SCSI, USB o LPT en máquinas anteriores al estándar USB). La
profundidad del color depende de las características del vector de escaneado
(la primera de las características básicas que definen la calidad del escáner)
que lo normal es que sea de al menos 24 bits. Con 48 bits se obtiene una mejor
calidad o profundidad del color.
Otro
de los parámetros más relevantes de la calidad de un escáner es la resolución,
medida en píxeles
por pulgada (ppp). Los fabricantes de
escáneres en vez de referirse a la resolución óptica real del escáner,
prefieren hacer referencia a la resolución interpolada, que es mucho mayor
gracias a la interpolación software.
Por
hacer una comparación entre tipos de escáns más caros llegaban hasta los 5400
ppp. Un escáner de tambor tenía una resolución de 8000 a 14000 ppp.
El
tercer parámetro más importante para dotar de calidad a un escáner es el rango
de densidad. Si el escáner tiene un alto rango de densidad, significa que es
capaz de reproducir sombras y brillos con una sola pasada.
Al
escanear se obtiene como resultado una imagen RGB no comprimida que puede
transferirse a la computadora. Algunos escáneres comprimen y limpian la imagen
usando algún tipo de firmware embebido.
Una vez se tiene la imagen en la computadora, se puede procesar con algún
programa de tratamiento de imágenes como Photoshop, Paint Shop Pro o GIMP y se
puede guardar en cualquier unidad de almacenamiento como el disco duro.
Normalmente
las imágenes escaneadas se guardan con formato JPEG, TIFF,mapa de bits o PNG dependiendo del uso que se le quiera dar a dicha
imagen más tarde.
Cabe
mencionar que algunos escáneres se utilizan para capturar texto editable (no
sólo imágenes como se había visto hasta ahora), siempre y cuando la computadora
pueda leer este texto. A este proceso se le llama OCR (Optical
Character Recognition).
HISTORIA DEL
LÁPIZ ÓPTICO
Es una unidad de ingreso de
información que funciona acoplada a una pantalla fotosensible.
Es un dispositivo
exteriormente semejante a un lápiz, con un mecanismo de resorte en la punta o
en un botón lateral, mediante el cual se puede seleccionar información
visualizada en la pantalla. Cuando se dispone de información desplegada, con el
lápiz óptico se puede escoger una opción entre las diferentes alternativas,
presionándolo sobre la ventana respectiva o presionando el botón lateral,
permitiendo de ese modo que se proyecte un rayo láser desde el lápiz hacia la
pantalla fotosensible.
Es un dispositivo señalador
que permite sostener sobre la pantalla un lápiz que está conectado al ordenador
o computadora y con el que es posible seleccionar elementos u opciones (el
equivalente a un clic de mouse o ratón), bien presionando un botón en un
lateral del lápiz óptico o presionando éste contra la superficie de la
pantalla. El lápiz contiene sensores luminosos y envía una señal a la
computadora cada vez que registra una luz, por ejemplo al tocar la pantalla
cuando los píxeles no negros que se encuentran bajo la punta del lápiz son
refrescados por el haz de electrones de la pantalla. La pantalla de la
computadora no se ilumina en su totalidad al mismo tiempo, sino que el haz de
electrones que ilumina los píxeles los recorre línea por línea, todas en un
espacio de 1/50 de segundo. Detectando el momento en que el haz de electrones
pasa bajo la punta del lápiz óptico, el ordenador puede determinar la posición
del lápiz en la pantalla. El lápiz óptico no requiere una pantalla ni un
recubrimiento especiales como puede ser el caso de una pantalla táctil, pero
tiene la desventaja de que sostener el lápiz contra la pantalla durante
periodos largos de tiempo llega a cansar al usuario.
EVOLUCION HISTORICA DEL MICROFONO.
En 1827, Wheastone utiliza por primera vez la
palabra “micrófono” para describir un dispositivo acústico diseñado para
amplificar sonidos débiles. Procede de los vocablos griegos “micro”(pequeño) y
“phon”(sonido).
En 1876, Alexander Graham Bell registra una patente del “telégrafo hablado”(el primer teléfono). Por primera vez incluye el micro funcional que usa un electroimán.
En 1877, aparece el micrófono de “contacto suelto” o “carbón”, un diseño no magnético basado en partículas conductoras de carbón como las que tienen los teléfonos.
En 1878, es diseñado el primer micro de bobina móvil.
En 1917, presentan el primer micro de condensador
práctico y moderno.
En 1931, Western Electric presenta el primer micro
dinámico: el modelo 600, serie 618.
En 1931, la marca RCA presenta el primer micrófono de cinta bidireccional: 44ª de imán permanente.
En 1931, la marca RCA presenta el primer micrófono de cinta bidireccional: 44ª de imán permanente.
En 1947, se funda AKG en Viena.
En 1948, Neumann lanza el micro a válvulas U47, el
primer micro de condensador con patrón conmutable entre cardioide y
omnidireccional. Acabó convirtiéndose en todo un clásico para grabar voces
desde que se supo que Frank Sinatra se negaba a cantar sin su U47.
En 1962, Hideo Matsushita establece la empresa
Audio-Technica Corporation en Tokio. La compañía lanza los modelos AT-1 y
AT-3MM de cápsulas estereofónicas y empieza a suministrar cápsulas a
fabricantes de audio. Posteriormente, en 1978, Audio-Technica lanza los
auriculares de condensador ATH-8 y ATH-7. Estos auriculares ganaron diversos
premios.
Este año también se produjo el desarrollo y
lanzamiento de la Serie 800 de micrófonos, y la creación de Audio-Technica Ltd.
en Leeds, Inglaterra.
En 1991, sale al mercado el micrófono de condensador AT4033, elegido mejor micrófono en el AES(Audio Engineering Society) y en 1994, presenta el micrófono de condensador de multipatrón AT4050/CM5.
En 1991, sale al mercado el micrófono de condensador AT4033, elegido mejor micrófono en el AES(Audio Engineering Society) y en 1994, presenta el micrófono de condensador de multipatrón AT4050/CM5.
En 1995, la planta de fabricación de micrófonos,
auriculares, sistemas inalámbricos y mezcladores de micrófono consigue la
certificación ISO9002.
En 1996, los micrófonos y auriculares Audio-Technica son utilizados en todos los recintos de los Juegos Olímpicos de Atlanta.
En 1996, los micrófonos y auriculares Audio-Technica son utilizados en todos los recintos de los Juegos Olímpicos de Atlanta.
En 1998, Audio-Technica presenta el AT4060 un micro
de condensador a válvulas de estudio; y el excelente resultado de los productos
Audio-Technica en Atlanta ’96, hacen que en el año 2000 sea designada también
como proveedor de en los juegos de Sydney’00.
En 2002, Audio-Technica celebra su 40 aniversario.
Y es designada, para proporcionar aproximadamente 2.800 micrófonos para los
Juegos de SALT Lake City, marcando así su primera participación en unos Juegos
Olímpicos de Invierno. A pesar de las severas condiciones climáticas, los
micros A-T respondieron perfectamente.
Desde sus inicios como fabricante de cápsulas estereofónicas hace 40 años,
Desde sus inicios como fabricante de cápsulas estereofónicas hace 40 años,
Audio-Technica ha permanecido en la vanguardia y ha
desarrollado numerosas tecnologías que se han convertido en estándares de la
industria.
DISPOSITIVOS DE
SALIDA
HISTORIA DE LOS MONITORES
El monitor es el principal
periférico de salida de una computadora. Estos se conectan a través de una
tarjeta gráfica conocida con el nombre de adaptador o tarjeta de vídeo.
La imagen que podemos observar
en los monitores está formada por una matriz de puntos de luz. Cada punto de
luz reflejado en la pantalla es denominado como un píxel.
Clasificación según estándares de monitores
Según los estándares de
monitores se pueden clasificar en varias categorías. Todos han ido
evolucionando con el objetivo de ofrecer mayores prestaciones, definiciones y
mejorar la calidad de las imágenes.
Monitores MDA:
Los monitores MDA por sus
siglas en inglés “Monochrome Display Adapter” surgieron en el año 1981. Junto
con la tarjeta CGA de IBM.
LosMDA conocidos popularmente por los monitores monocromáticos solo
ofrecían textos, no incorporaban modos gráficos.
Este tipo de monitores se
caracterizaban por tener un único color principalmente verde. El mismo creaba
irritación en los ojos de sus usuarios.
Características:
·
Sin modo
gráfico.
·
Resolución
720_350 píxeles.
·
Soporte de texto
monocromático.
·
No soporta
gráfico ni colores.
·
La tarjeta
gráfica cuenta con una memoria de vídeo de 4 KB.
·
Soporta
subrayado, negrita, cursiva, normal, invisibilidad para textos.
Monitor
CGA:
Los monitores CGA por
sus siglas en inglés “Color Graphics Adapter” o “Adaptador de Gráficos en
Color” en español. Este tipo de monitores fueron comercializados a partir del
año 1981, cuando se desarrollo la primera tarjeta gráfica conjuntamente con un
estándar de IBM.
A pesar del lanzamiento de
este nuevo monitor los compradores de PC seguían optando por los monitores MDA,
ambos fueron lanzados al mercado en el mismo año existiendo competencia entre
ellos. CGA fue el primero en contener sistema gráfico a color.
Características:
·
Resoluciones
160_200, 320×200, 640×200 píxeles.
·
Soporte de
gráfico a color.
·
Diseñado
principalmente para juegos de computadoras.
·
La tarjeta
gráfica contenía 16 KB de memoria de vídeo.
Monitor EGA:
Por sus siglas en inglés
“Enhanced Graphics Adapter”, es un estándar desarrollado IBM para la
visualización de gráficos, creado en 1984. Este nuevo monitor incorporaba una
mayor amplitud de colores y resolución.
EGA incorporaba mejoras con respecto al anterior CGA.
Años después también sería sustituido por un monitor de mayores
características.
Características:
·
Resolución de
640_350 píxeles.
·
Soporte para 16
colores.
·
La tarjeta
gráfica EGA estándar traían 64 KB de memoria de vídeo.
Monitor
VGA:
Los monitores VGA por sus
siglas en inglés “Video Graphics Array”, fue lanzado en 1987 por IBM. A partir
del lanzamiento de los monitores VGA, los monitores anteriores empezaban a
quedar obsoletos. El VGA incorporaba modo 256 con altas resoluciones.
Por el desarrollo alcanzado
hasta la fecha, incluidas en las tarjetas gráficas, los monitores anteriores no
son compatibles a los VGA, estos incorporan señales analógicas.
Características:
Características:
·
Soporte de
720×400 píxeles en modo texto.
·
Soporte de
640×480 píxeles en modo gráfico con 16 colores.
·
Soporte de
320×200 píxeles en modo gráfico con 256 colores.
·
Las tarjetas
gráficas VGA estándares incorporaban 256 KB de memoria de vídeo.
Monitor
SVGA:
SVGA denominado por sus siglas
en inglés “Super Video Graphics Array”, también conocidos por “Súper VGA”.
Estos tipos de monitores y estándares fueron desarrollados para eliminar
incompatibilidades y crear nuevas mejoras de su antecesor VGA.
SVGA fue lanzado en 1989,
diseñado para brindar mayores resoluciones que el VGA. Este estándar cuenta con
varias versiones, los cuales soportan diferentes resoluciones.
Características:
Características:
·
Resolución de
800×600, 1024_768 píxeles y superiores.
·
Para este nuevo
monitor se desarrollaron diferentes modelos de tarjetas gráficas como: ATI,
GeForce, NVIDIA, entre otros.
Clasificación según tecnología de monitores
En cuanto al tipo de
tecnología los monitores se pueden clasificar en varios aspectos. Estas
evoluciones de la tecnología han sido llevadas a cabo en parte por el ahorro de
energía, tamaño y por brindar un nuevo producto en el mercado.
Monitores
CRT:
Está basado en un Tubo de
Rayos Catódicos, en inglés “Cathode Ray Tube”. Es el más conocido, fue
desarrollado en 1987 por Karl Ferdinand Braun.
Utilizado principalmente en
televisores, ordenadores, entre otros. Para lograr la calidad que hoy cuentan,
estos pasaron por diferentes modificaciones y que en la actualidad también se
realizan.
Funcionamiento:
Dibuja una imagen barriendo
una señal eléctrica horizontalmente a lo largo de la pantalla, una línea por
vez. La amplitud de dicha señal en el tiempo representa el brillo instantáneo
en ese punto de la pantalla.
Una amplitud nula, indica que
el punto de la pantalla que se marca en ese instante no tendrá representando un
píxel negro. Una amplitud máxima determina que ese punto tendrá el máximo
brillo.
Ventajas:
·
Excelente
calidad de imagen (definición, contraste, luminosidad).
·
Económico.
·
Tecnología
robusta.
·
Resolución de
alta calidad.
Desventajas:
·
Presenta
parpadeo por el refrescado de imagen.
·
Consumo de
energía.
·
Generación de
calor.
·
Generación de
radiaciones eléctricas y magnéticas.
·
Alto peso y
tamaño.
Pantallas LCD:
A este tipo de tecnología se
le conoce por el nombre de pantalla o display LCD, sus siglas en inglés
significan “Liquid Crystal Display” o “Pantalla de Cristal Líquido” en español.
Este dispositivo fue inventado por Jack Janning.
Estas pantallas son incluidas
en los ordenadores portátiles, cámaras fotográficas, entre otros.
Funcionamiento:
El funcionamiento de estas
pantallas se fundamenta en sustancias que comparten las propiedades de sólidos
y líquidos a la vez.
Cuando un rayo de luz
atraviesa una partícula de estas sustancias tiene necesariamente que seguir el
espacio vacío que hay entre sus moléculas como lo haría atravesar un cristal
sólido pero a cada una de estas partículas se le puede aplicar una corriente eléctrica
que cambie su polarización dejando pasar la luz o no.
Una pantalla LCD está formada
por 2 filtros polarizados colocados perpendicularmente de manera que al aplicar
una corriente eléctrica deja pasar o no la luz. Para conseguir el color es
necesario aplicar tres filtros más para cada uno de los colores básicos rojo,
verde y azul.
Para la reproducción de varias
tonalidades de color se deben aplicar diferentes niveles de brillo intermedios
entre luz y no luz lo cual se consigue con variaciones en el voltaje que se
aplica a los filtros.
Ventajas:
·
Poco peso y
tamaño.
·
Buena calidad de
colores.
·
No contiene
parpadeo.
·
Poco consume de
energía.
·
Poca generación
de calor.
·
No genera
radiaciones eléctricas y magnéticas.
Desventajas:
·
Alto costo.
·
Angulo limitado
de visibilidad.
·
Brillo limitado.
·
Bajo tiempo de
respuesta de píxeles.
·
Contiene
mercurio.
Pantallas
Plasma:
La pantalla de plasma fue
desarrollada en la Universidad de Illinois por Donald L. Bitzer y H. Gene
Slottow.
Originalmente los paneles eran
monocromáticos. En 1995 Larry Weber logró crear la pantalla de plasma de color.
Este tipo de pantalla entre sus principales ventajas se encuentran una la mayor
resolución y ángulo de visibilidad.
Funcionamiento:
El principio de funcionamiento
de una pantalla de plasma consiste en iluminar pequeñas luces fluorescentes de
colores para conformar una imagen. Las pantallas de plasma funcionan como las
lámparas fluorescentes, en que cada píxel es semejante a un pequeño foco
coloreado.
Cada uno de los píxeles que
integran la pantalla está formado por una pequeña celda estanca que contiene un
gas inerte (generalmente neón o xenón). Al aplicar una diferencia de potencial
entre los electrodos de la celda, dicho gas pasa al estado de plasma.
El gas así cargado emite
radiación ultravioleta (UV) que golpea y excita el material fosforescente que
recubre el interior de la celda. Cuando el material fosforescente regresa a su
estado energético natural, emite luz visible.
Ventajas:
·
Excelente
brillo.
·
Alta resolución.
·
Amplio ángulo de
visión.
·
No contiene
mercurio.
·
Tamaño de
pantalla elevado.
Desventajas:
·
Vida útil corta.
·
Coste de
fabricación elevado, superior a los LCD.
·
Consumo de
electricidad elevado.
·
Poca pureza del
color.
·
Consumo
energético y emisión de calor elevada.
Una impresora sirve para transcribir un documento
desde la PC a un medio físico como el papel, por medio del uso de cintas,
cartuchos de tinta o con tecnología láser. La historia de la impresora se puede
remontar junto con la creación de la primera computadora, la máquina analítica
de Charles Babbage, a pesar de que el inventor nunca logró construir su PC, sí
terminó los planos en los que se incluía el mecanismo de impresión. En 1950
llega la primera impresora eléctrica para computadoras, sin embargo solo era
capaz de imprimir textos. Siete años más tarde se desarrolla la impresión por
matriz de puntos, pero contaba con las mismas limitaciones que su antecesor. En
1959 Xerox fabrica la fotocopiadora y para 1973 aparece la primera
fotocopiadora a color, fabricada por Canon. En 1978 se crea la impresora de
margarita, que únicamente podía escribir letras y números, pero tenía la
calidad de una máquina de escribir. Finalmente en 1980 aparece la impresora
láser en blanco y negro, 8 años más tarde le implementan la modalidad de color.
HISTORIA DE LAS BOCINAS
La bocina es un instrumento
musical de aire. Se inventó en Francia en1680 y servía tan solo para la caza. Después se
introdujo en Alemania y allí se perfeccionó y se aplicó a la
música. Para esta se adoptó en Francia en 1730 pero no la introdujeron en la orquesta de la
ópera hasta en 1757.
En esta época daba muy pocos
sonidos, pero en 1759 un alemán llamado Hampl discurrió que era fácil hacerle
producir otros, tapando con la mano una parte del pabellón o campana del
instrumento. Este descubrimiento abrió la carrera a artistas hábiles que se
entregaban al estudio de latrompa. Otro alemán llamado Haltenhoft mejoró este
instrumento añadiendo una bomba por medio de la cual se afina exactamente,
cuando por el calor del aliento se suben las entonaciones.
Mas informaciòn:
dispositivos periféricos

No hay comentarios:
Publicar un comentario